2024/05/09 12:50 1/4 DevOps: LWa6noH Post Mortem

DevOps: LWabnoH Post Mortem

https://incident.io/blog/incident-post-mortem-template

Key information

The key information section is a recap of the data behind the incident. It's the most succinct summary
of the incident, which is useful to orient anyone reading the remainder of the document.

Think of this as the metadata of your incident. Core information such as incident type, severity, leads
and more should be outlined here.

Here’s what this section could look like:

00 Tagged Data!
Incident Type: Platform
Severity: Major
Affected services: Login, Cart, User Preferences

[] Team
Incident Lead: Chris Evans
Reporter: Steven Millhouse
Active participants: Rebecca Song
Observers: Michael Scott

[] Useful Links
Jira issue
Slack channel

00 Key Timestamps
Impact started at: November 10, 2022 2:12 PM
Reported at: November 10, 2022 2:12 PM
Identified at: November 10, 2022 2:18 PM
Fixed at: @November 10, 2022 2:20 PM (UTC)
Closed at: November 10, 2022 2:30 PM

Incident summary

The summary should be a concise and accessible overview of the incident. It's important that this
summary is exactly that, a summary. If you try to throw everything in here, it becomes very difficult
for someone to come in later on and easily parse what happened.

Your incident summary should clearly articulate what happened, who was involved, how you
responded, and the overall impact of the event. It’s helpful for the summary to be written such that
someone who wasn'’t there can use it to develop a high-level understanding of the situation.

RTzRa's hive - https://wiki.rtzra.ru/


https://incident.io/blog/incident-post-mortem-template

Last update: 2023/10/03 22:19 devops:incident-post-mortem-template https://wiki.rtzra.ru/devops/incident-post-mortem-template

We find it useful to pitch it so your boss’s boss would understand!

Here's a real-life incident post-mortem summary we wrote up internally:

0 On 2022-11-18 from 15:39 to approximately 16:23, an asynchronous event
caused an error which took one of our Heroku "dynos" down (referred to as
servers for simplicity below). Our infrastructure logic is such that if an
event has an issue being processed, it retries. In this case, it meant that
another server then attempted to process the same malformed/dangerous event,
before also crashing. This repeated until all our servers were down, at
which point our app became completely unavailable. This type of error is
commonly known as a "poison pill".

The poison pill was caused by a consumer that returned an error, which
wrapped a nil error. This meant our consumer tried to unwrap the error and
got a nil pointer dereference when trying to access the root cause. Normally
this would be fine, however only the actual app-code section of our queue
consumers were within the panic recovery boundary, so by panicking in the
pubsub wrapper, we'd crash the entire app.

We quickly rebooted the servers, but unfortunately, the event was retried
again, taking down each server in quick succession after a few minutes. This
continued for around 25 minutes.

We deployed a fix to make sure all of the code in our consumers were covered
by a "recover" statement (meaning we handle errors like this more
gracefully), which then quickly caught the error once we deployed it and
also prevented it taking the app down again.

From there, we fixed the bad code and stayed online. We also made a number
of other improvements to our app and infrastructure setup.

Incident timeline

The incident timeline exists to provide a narrative of the incident; essentially retelling the story from
start to finish. It should outline key events and developments that took place, investigations that were
carried out, and any actions that were taken.

It’s tempting to go into huge amounts of detail here, but we’d typically advise the detail to remain in
an incident communication thread (i.e. a Slack channel), and have the timeline contain just the
significant events and developments.

Typically we’'d include the timestamp (in the dominant timezone for the incident or UTC if spanning
many), the time since the notional start of the incident, as well as any details about what was
happening.

Timestamp  Event
12:00:00 Chris reported the incident
12:07:00 (+7mins) Incident lead assigned

https://wiki.rtzra.ru/ Printed on 2024/05/09 12:50



2024/05/09 12:50 3/4 DevOps: LWa6noH Post Mortem

12:10:00 (+10mins) Issue identified
12:12:00 (+12mins) Incident closed

Contributors

We think it's helpful to enumerate the contributors of an incident, where contributors are thought of
not as ‘root causes’ but as a collection of things that had to be true for this incident to take place, or
that contributed to its severity.

This can include technical contributors (e.g. the server’s disk filled up), human contributors (e.g. the
on-call engineer did not respond the first time we paged them), and any other external contributors
(e.g. we were simultaneously running a marketing event).

It's useful to enumerate these items to fully explore the space of the problem, and avoid overly
fixating on a singular cause.

Mitigators

Where contributors constitute the set of things that helped the incident occur, mitigators can be
thought of as the opposite. More precisely, they're anything that helped to reduce the overall impact
of the event.

Like contributors these can come in many guises, like the incident happened during working hours, or
the fact that the person who knows the most about the system at the heart of the incident also being
on call.

It's useful to explicitly call these out, as they often highlight positive capacities that are helpful to
double down on, or socialize further.

Learnings and risks

This section is a little harder to capture, but it should answer questions like: what did we learn, how
can we streamline our response in the future, and what broader risks did this incident point towards?

For example, you might have learned that one of your teammates was the only person who knew the
details of the system that failed during this incident, and that might point at a more general “key
person risk.” If other incidents point at similar risks, that's useful learning for teams.

Follow-up actions

Follow-up actions are here to convey what’s being done to reduce the likelihood and/or impact of
similar events in future.

In the context of this document, we think it’s most useful to highlight any key actions items or

RTzRa's hive - https://wiki.rtzra.ru/



Last update: 2023/10/03 22:19 devops:incident-post-mortem-template https://wiki.rtzra.ru/devops/incident-post-mortem-template

deliverables, rather than the full set. Ultimately, this will vary depending on the intended audience,
but if the document is being written to be read and learned from, this section should close the loop on
what'’s being done to mitigate the major themes that have been identified.

Optional: Post-mortem meeting notes

Many post-mortems can happen async but others may require a dedicated meeting to talk through
what happened—especially incidents that were of higher severity. In cases like these, it's a good idea
to set up some time with incident response team members and relevant stakeholders and use the
post-mortem as your meeting agenda.

While it may seem a bit redundant, having the space to have a retrospective and talk through issues
in real-time ultimately encourages better team collaboration and communication that’s nearly
impossible to capture over an async document.

It's a good idea to brainstorm and collect talking points to help guide your post-mortem analysis
meeting. In the end, an effective-post mortem meeting ensures that your team is rallying around
tactics that will drive continuous improvement of your response processes and ultimately your
product.

post-mortem

From:
https://wiki.rtzra.ru/ - RTzRa's hive

Permanent link:
https://wiki.rtzra.ru/devops/incident-post-mortem-template

Last update: 2023/10/03 22:19

https://wiki.rtzra.ru/ Printed on 2024/05/09 12:50


https://wiki.rtzra.ru/tag/post-mortem?do=showtag&tag=post-mortem
https://wiki.rtzra.ru/
https://wiki.rtzra.ru/devops/incident-post-mortem-template

	DevOps: Шаблон Post Mortem
	Key information
	Incident summary
	Incident timeline
	Contributors
	Mitigators
	Learnings and risks
	Follow-up actions
	Optional: Post-mortem meeting notes


